Image Segmentation by Student's-t Mixture Models Based on Markov Random Field and Weighted Mean Template
نویسندگان
چکیده
Finite mixture model (FMM) with Gaussian distribution has been widely used in many image processing and pattern recognition tasks. This paper presents a new Student's-t mixture model (SMM) based on Markov random field (MRF) and weighted mean template. In this model, the Student's-t distribution is considered as an alternative to the Gaussian distribution due to the former is heavily tailed than Gaussian distribution, thus providing robustness to outliers. With the help of the weighted mean template, the spatial information between neighboring pixels of an image is considered during the learning step. In addition, the proposed method is able to impose the smoothness constraint on the pixel label by using MRF. Furthermore, an efficient energy function and a novel factor are applied in current model to decrease the computational complexity. Numerical experiments are presented on simulated and real world images, and the results are compared with other FMM-based models.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کامل